HyperCys: A Structure- and Sequence-Based Predictor of Hyper-Reactive Druggable Cysteines

Author:

Gao Mingjie1ORCID,Günther Stefan1ORCID

Affiliation:

1. Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, 79104 Freiburg, Germany

Abstract

The cysteine side chain has a free thiol group, making it the amino acid residue most often covalently modified by small molecules possessing weakly electrophilic warheads, thereby prolonging on-target residence time and reducing the risk of idiosyncratic drug toxicity. However, not all cysteines are equally reactive or accessible. Hence, to identify targetable cysteines, we propose a novel ensemble stacked machine learning (ML) model to predict hyper-reactive druggable cysteines, named HyperCys. First, the pocket, conservation, structural and energy profiles, and physicochemical properties of (non)covalently bound cysteines were collected from both protein sequences and 3D structures of protein–ligand complexes. Then, we established the HyperCys ensemble stacked model by integrating six different ML models, including K-nearest neighbors, support vector machine, light gradient boost machine, multi-layer perceptron classifier, random forest, and the meta-classifier model logistic regression. Finally, based on the hyper-reactive cysteines’ classification accuracy and other metrics, the results for different feature group combinations were compared. The results show that the accuracy, F1 score, recall score, and ROC AUC values of HyperCys are 0.784, 0.754, 0.742, and 0.824, respectively, after performing 10-fold CV with the best window size. Compared to traditional ML models with only sequenced-based features or only 3D structural features, HyperCys is more accurate at predicting hyper-reactive druggable cysteines. It is anticipated that HyperCys will be an effective tool for discovering new potential reactive cysteines in a wide range of nucleophilic proteins and will provide an important contribution to the design of targeted covalent inhibitors with high potency and selectivity.

Funder

China Scholarship Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3