Do We Preserve Tumor Control Probability (TCP) in FLASH Radiotherapy? A Model-Based Analysis

Author:

Liew Hans123,Mein Stewart1234,Tessonnier Thomas5,Abdollahi Amir123ORCID,Debus Jürgen2367,Dokic Ivana123,Mairani Andrea58

Affiliation:

1. Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany

2. Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany

3. Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany

4. Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104-6303, USA

5. Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany

6. Department of Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), University Hospital Heidelberg, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany

7. Clinical Cooperation Unit Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany

8. Medical Physics Unit, National Centre of Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy

Abstract

Reports of concurrent sparing of normal tissue and iso-effective treatment of tumors at ultra-high dose-rates (uHDR) have fueled the growing field of FLASH radiotherapy. However, iso-effectiveness in tumors is often deduced from the absence of a significant difference in their growth kinetics. In a model-based analysis, we investigate the meaningfulness of these indications for the clinical treatment outcome. The predictions of a previously benchmarked model of uHDR sparing in the “UNIfied and VERSatile bio response Engine” (UNIVERSE) are combined with existing models of tumor volume kinetics as well as tumor control probability (TCP) and compared to experimental data. The potential TCP of FLASH radiotherapy is investigated by varying the assumed dose-rate, fractionation schemes and oxygen concentration in the target. The developed framework describes the reported tumor growth kinetics appropriately, indicating that sparing effects could be present in the tumor but might be too small to be detected with the number of animals used. The TCP predictions show the possibility of substantial loss of treatment efficacy for FLASH radiotherapy depending on several variables, including the fractionation scheme, oxygen level, and DNA repair kinetics. The possible loss of TCP should be seriously considered when assessing the clinical viability of FLASH treatments.

Funder

German Research Council

National Center for Tumor diseases

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3