Adaptive IDS for Cooperative Intelligent Transportation Systems Using Deep Belief Networks

Author:

Almalki Sultan AhmedORCID,Abdel-Rahim Ahmed,Sheldon Frederick T.ORCID

Abstract

The adoption of cooperative intelligent transportation systems (cITSs) improves road safety and traffic efficiency. Vehicles connected to cITS form vehicular ad hoc networks (VANET) to exchange messages. Like other networks and systems, cITSs are targeted by attackers intent on compromising and disrupting system integrity and availability. They can repeatedly spoof false information causing bottlenecks, traffic jams and even road accidents. The existing security infrastructure assumes that the network topology and/or attack behavior is static. However, the cITS is inherently dynamic in nature. Moreover, attackers may have the ability and resources to change their behavior continuously. Assuming a static IDS security model for VANETs is not suitable and can lead to low detection accuracy and high false alarms. Therefore, this paper proposes an adaptive security solution based on deep learning and contextual references that can cope with the dynamic nature of the cITS topologies and increasingly common attack behaviors. In this study, deep belief networks (DBN) modeling was used to train the detection model. Binary cross entropy was used as a loss function to measure the prediction error. Two activation functions were used, Relu and Softmax, for input–output mapping. The Relu was used in the hidden layers, while the Sigmoid was used in the last layer to map the real vector to output between 0 and 1. The adaptation mechanism was incorporated into the detection model using a moving average that monitors predicted values within a time window. In this way, the model can readjust the classification thresholds on-the-fly as appropriate. The proposed model was evaluated using the Next Generation Simulation (NGSIM) dataset, which is commonly used in such related works. The result is improved accuracy, demonstrating that the adaptation mechanism used in this study was effective.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3