Ensemble-Based Hybrid Context-Aware Misbehavior Detection Model for Vehicular Ad Hoc Network

Author:

Ghaleb ,Maarof ,Zainal ,Alrimy ,Alsaeedi ,Boulila

Abstract

Life-saving decisions in vehicular ad hoc networks (VANETs) depend on the availability of highly accurate, up-to-date, and reliable data exchanged by neighboring vehicles. However, spreading inaccurate, unreliable, and false data by intruders create traffic illusions that may cause loss of lives and assets. Although several solutions for misbehavior detection have been proposed to address these issues, those solutions lack adequate representation and the adaptability to vehicular context. The use of predefined static thresholds and lack of comprehensive context representation have rendered the existing solutions limited to specific scenarios and attack types, which impedes their generalizability. This paper addresses these limitations by proposing an ensemble-based hybrid context-aware misbehavior detection system (EHCA-MDS) model. EHCA-MDS has been developed in four phases, as follows. The static thresholds have been replaced by dynamic ones created on the fly by analyzing the spatial and temporal properties of the mobility information collected from neighboring vehicles. Kalman filter-based algorithms were used to collect the mobility information of neighboring vehicles. Three sets of features were then derived, each of which has a different perspective, namely data consistency, data plausibility, and vehicle behavior. These features were used to construct a dynamic context reference using the Hampel filter. The Hampel-based z-score was used to evaluate the vehicles based on their behavioral activities, data consistency, and plausibility. For comprehensive features representation, multifaceted, non-parametric-based statistical classifiers were constructed and updated online using a Hampel filter-based algorithm. For accurate representation, the output of the statistical classifiers, vehicles’ scores, context reference parameters, and the derived features were used as input to an ensemble learning-based algorithm. Such representation helps to identify the misbehaving vehicles more effectively. The proposed EHCA-MDS model was evaluated in the presence of different types of misbehaving vehicles under different context scenarios through extensive simulations, utilizing a real-world traffic dataset. The results show that the accuracy and robustness of the proposed EHCA-MDS under different vehicular dynamic context scenarios were higher than existing solutions, which confirms its feasibility and effectiveness to improve the performance of VANET critical applications.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3