Instrumental Drift in Untargeted Metabolomics: Optimizing Data Quality with Intrastudy QC Samples

Author:

Märtens Andre12ORCID,Holle Johannes3ORCID,Mollenhauer Brit45,Wegner Andre1ORCID,Kirwan Jennifer6ORCID,Hiller Karsten1

Affiliation:

1. Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology, Technische Universität Braunschweig, 38118 Braunschweig, Germany

2. Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany

3. Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Universitätsmedizin Berlin, 13353 Berlin, Germany

4. Department of Neurology, University Medical Center Göttingen, 37073 Göttingen, Germany

5. Paracelsus-Elena-Klinik, 34128 Kassel, Germany

6. Berlin Institute of Health at Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany

Abstract

Untargeted metabolomics is an important tool in studying health and disease and is employed in fields such as biomarker discovery and drug development, as well as precision medicine. Although significant technical advances were made in the field of mass-spectrometry driven metabolomics, instrumental drifts, such as fluctuations in retention time and signal intensity, remain a challenge, particularly in large untargeted metabolomics studies. Therefore, it is crucial to consider these variations during data processing to ensure high-quality data. Here, we will provide recommendations for an optimal data processing workflow using intrastudy quality control (QC) samples that identifies errors resulting from instrumental drifts, such as shifts in retention time and metabolite intensities. Furthermore, we provide an in-depth comparison of the performance of three popular batch-effect correction methods of different complexity. By using different evaluation metrics based on QC samples and a machine learning approach based on biological samples, the performance of the batch-effect correction methods were evaluated. Here, the method TIGER demonstrated the overall best performance by reducing the relative standard deviation of the QCs and dispersion-ratio the most, as well as demonstrating the highest area under the receiver operating characteristic with three different probabilistic classifiers (Logistic regression, Random Forest, and Support Vector Machine). In summary, our recommendations will help to generate high-quality data that are suitable for further downstream processing, leading to more accurate and meaningful insights into the underlying biological processes.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3