Transcriptional and Metabolic Profiling of Arabidopsis thaliana Transgenic Plants Expressing Histone Acetyltransferase HAC1 upon the Application of Abiotic Stress—Salt and Low Temperature

Author:

Ivanova Tatiana1,Dincheva Ivayla1ORCID,Badjakov Ilian1ORCID,Iantcheva Anelia1

Affiliation:

1. AgroBioInstitute, Agricultural Academy, Blvd. Dragan Tzankov 8, 1164 Sofia, Bulgaria

Abstract

Augmented knowledge of plant responses upon application of stress could help improve our understanding of plant tolerance under abiotic stress conditions. Histone acetylation plays an important role in gene expression regulation during plant growth and development and in the response of plants to abiotic stress. The current study examines the level of transcripts and free metabolite content in transgenic Arabidopsis thaliana plants expressing a gene encoding histone acetyltransferase from Medicago truncatula (MtHAC1) after its heterologous expression. Stable transgenic plants with HAC1 gain and loss of function were constructed, and their T5 generation was used. Transgenic lines with HAC1-modified expression showed a deviation in root growth dynamics and leaf area compared to the wild-type control. Transcriptional profiles were evaluated after the application of salinity stress caused by 150 mM NaCl at four different time points (0, 24, 48, and 72 h) in treated and non-treated transgenic and control plants. The content and quantity of free metabolites—amino acids, mono- and dicarbohydrates, organic acids, and fatty acids—were assessed at time points 0 h and 72 h in treated and non-treated transgenic and control plants. The obtained transcript profiles of HAC1 in transgenic plants with modified expression and control were assessed after application of cold stress (low temperature, 4 °C).

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3