HS-SPME-GC–MS Profiling of Volatile Organic Compounds and Polar and Lipid Metabolites of the “Stendesto” Plum–Apricot Kernel with Reference to Its Parents

Author:

Mihaylova Dasha1ORCID,Popova Aneta2ORCID,Dincheva Ivayla3ORCID,Pandova Svetla4

Affiliation:

1. Department of Biotechnology, University of Food Technologies, 4002 Plovdiv, Bulgaria

2. Department of Catering and Nutrition, University of Food Technologies, 4002 Plovdiv, Bulgaria

3. Department of Agrobiotechnologies, Agro Bio Institute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria

4. Department of Breeding and Genetic Resources, Fruit Growing Institute, Agricultural Academy, 4000 Plovdiv, Bulgaria

Abstract

Plum–apricot hybrids are the successful backcrosses of plums and apricots. Plums and apricots are well-known and preferred by consumers because of their distinct sensory and beneficial health properties. However, kernel consumption remains limited even though kernels are easily accessible. The “Stendesto” hybrid originates from the “Modesto” apricot and the “Stanley” plum. Kernal metabolites exhibited quantitative differences in terms of metabolites identified by gas chromatography–mass spectrometry (GC–MS) analysis and HS-SPME technique profiling. The results revealed a total of 55 different compounds. Phenolic acids, hydrocarbons, organic acids, fatty acids, sugar acids and alcohols, mono- and disaccharides, as well as amino acids were identified in the studied kernels. The hybrid kernel generally inherited all the metabolites present in the parental kernels. Volatile organic compounds were also investigated. Thirty-five compounds identified as aldehydes, alcohols, ketones, furans, acids, esters, and alkanes were present in the studied samples. Considering volatile organic compounds (VOCs), the hybrid kernel had more resemblance to the plum one, bearing that alkanes were only identified in the apricot kernel. The objective of this study was to investigate the volatile composition and metabolic profile of the first Bulgarian plum–apricot hybrid kernels, and to provide comparable data relevant to both parents. With the aid of principal component analysis (PCA) and hierarchical cluster analysis (HCA), differentiation and clustering of the results occurred in terms of the metabolites present in the plum–apricot hybrid kernels with reference to their parental lines. This study is the first providing information about the metabolic profile of variety-defined kernels. It is also a pioneering study on the comprehensive evaluation of fruit hybrids.

Funder

Bulgarian National Science Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3