Metabolomics-Based Analysis of the Effects of Different Cultivation Strategies on Metabolites of Dendrobium officinale Kimura et Migo

Author:

Yang Da1,Song Yeyang1,Lu Anjin2,Qin Lin2,Tan Daopeng2,Zhang Qianru2,He Yuqi12,Lu Yanliu1

Affiliation:

1. Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563009, China

2. Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi 563000, China

Abstract

Dendrobium officinale Kimura et Migo is a famous plant with a high medicinal value which has been recorded in the Chinese Pharmacopoeia (2020 Edition). The medicinal properties of D. officinale are based on its chemical composition. However, there are no reports on how different cultivation methods affect its chemical composition. In order to reveal this issue, samples of the D. officinale were collected in this study through tree epiphytic cultivation, stone epiphytic cultivation, and greenhouse cultivation. Polysaccharides were determined by phenol sulfuric acid method and secondary metabolites were detected by the UPLC-MS technique. In addition, with regards to metabolomics, we used multivariate analyses including principal component analysis (PCA) and orthogonal partial least squares analysis (OPLS-DA) to screen for differential metabolites which met the conditions of variable importance projection values >1, fold change >4, and p < 0.05. The differential metabolites were taken further for metabolic pathway enrichment analysis, which was based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and validated by antioxidant activity. Comparing the three groups of samples according to the standards of the ChP (2020 edition), the results showed that the polysaccharide content of the samples from stony epiphytic cultivation and greenhouse cultivation was significantly higher than that of the samples from live tree epiphytic cultivation. Metabolomic analysis revealed that there were 185 differential metabolites among the 3 cultivation methods, with 99 of the differential metabolites being highest in the stone epiphytic cultivation. The results of the metabolic pathway enrichment analysis showed that the different cultivation strategies mainly effected four carbohydrate metabolic pathways, five secondary metabolite synthesis pathways, six amino acid metabolic pathways, one nucleotide metabolism pathway, three cofactor and vitamin metabolism pathways, and one translation pathway in genetic information processing. Furthermore, D. officinale from stone epiphytic cultivation which had the best antioxidant activity was implicated in differential metabolite production. This study revealed the effects of different cultivation methods on the chemical composition of D. officinale and also provided a reference for establishing the quality control standards to aid its development and utilization.

Funder

Department of Science and Technology of Guizhou Province

the Guizhou Engineering Research Center of Industrial Key-technology for Dendrobium Nobile

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference53 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3