Multi-Enzymatic Synthesis of Lactobionic Acid Using Wood-Degrading Enzymes Produced by White Rot Fungi

Author:

Piątek-Gołda Wiktoria1ORCID,Sulej Justyna1ORCID,Grąz Marcin1,Waśko Piotr23,Janik-Zabrotowicz Ewa34,Osińska-Jaroszuk Monika1ORCID

Affiliation:

1. Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland

2. Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland

3. Core Facility of Biospectroscopy, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland

4. Department of Cell Biology, Institute of Biological Sciences, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland

Abstract

Enzymes produced by white rot fungi are involved in the synthesis of secondary metabolites with valuable biotechnological properties. One of these metabolites is lactobionic acid (LBA). The aim of this study was to characterize a novel enzyme system consisting of a cellobiose dehydrogenase from Phlebia lindtneri (PlCDH), a laccase from Cerrena unicolor (CuLAC), a redox mediator (ABTS or DCPIP), and lactose as a substrate. We used quantitative (HPLC) and qualitative methods (TLC, FTIR) to characterise the obtained LBA. The free radical scavenging effect of the synthesised LBA was assessed with the DPPH method. Bactericidal properties were tested against Gram-negative and Gram-positive bacteria. We obtained LBA in all the systems tested; however, the study showed that the temperature of 50 °C with the addition of ABTS was the most advantageous condition for the synthesis of lactobionic acid. A mixture with 13 mM LBA synthesised at 50 °C with DCPIP showed the best antioxidant properties (40% higher compared with the commercial reagent). Furthermore, LBA had an inhibitory effect on all the bacteria tested, but the effect was better against Gram-negative bacteria with growth inhibition no lower than 70%. Summarizing the obtained data, lactobionic acid derived in a multienzymatic system is a compound with great biotechnological potential.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3