Inline monitoring of lactobionic acid production from cheese whey by Pseudomonas taetrolens in a stirred bioreactor using electrical conductivity

Author:

Romano Roberta1,Alberini Federico2ORCID,Raddadi Noura1,Fava Fabio1,Paglianti Alessandro23ORCID

Affiliation:

1. Department of Civil, Chemical, Environmental and Materials Engineering University of Bologna Bologna Italy

2. Department of Industrial Chemistry “Toso Montanari” University of Bologna Bologna Italy

3. Interdepartmental Centre for Industrial Agrofood Research Alma Mater Studiorum—Università di Bologna Cesena Italy

Abstract

AbstractIn this study, we introduce a novel experimental approach and present a simplified mathematical model for a quick monitoring of a biotec process producing lactobionic acid (LBA). It relies on monitoring the electrical conductivity of the fermentation broth and it is designed to predict the concentration of LBA throughout the microbial cheese whey valorization via LBA production. Following a systematic series of experiments conducted to refine the mathematical model, we performed conductivity monitoring during LBA production from “caciotta” and “squacquerone” wheys by Pseudomonas taetrolens in a 3 L stirred tank bioreactor. Throughout the bioproduction process, the conductivity values exhibited an upward trend corresponding to the increase in LBA concentration. Our findings underscore the feasibility and advantages of employing inline conductivity monitoring during LBA production from various cheese wheys. The results emphasize that conductivity measurements can effectively estimate product concentration in a fermentation process, particularly when there is a shift in ionic concentration. Furthermore, these conductivity measurements offer valuable insights for monitoring and optimizing the working conditions in a fermentation process.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3