A CRR2-Dependent sRNA Sequence Supports Papillomavirus Vaccine Expression in Tobacco Chloroplasts

Author:

Legen Julia1,Dühnen Sara1,Gauert Anton1ORCID,Götz Michael2,Schmitz-Linneweber Christian1

Affiliation:

1. Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany

2. BioEnergy GmbH, Dietersberg 1, 92334 Berching, Germany

Abstract

Human papillomavirus (HPV) infection is the leading cause of cervical cancer, and vaccination with HPV L1 capsid proteins has been successful in controlling it. However, vaccination coverage is not universal, particularly in developing countries, where 80% of all cervical cancer cases occur. Cost-effective vaccination could be achieved by expressing the L1 protein in plants. Various efforts have been made to produce the L1 protein in plants, including attempts to express it in chloroplasts for high-yield performance. However, manipulating chloroplast gene expression requires complex and difficult-to-control expression elements. In recent years, a family of nuclear-encoded, chloroplast-targeted RNA-binding proteins, the pentatricopeptide repeat (PPR) proteins, were described as key regulators of chloroplast gene expression. For example, PPR proteins are used by plants to stabilize and translate chloroplast mRNAs. The objective is to demonstrate that a PPR target site can be used to drive HPV L1 expression in chloroplasts. To test our hypothesis, we used biolistic chloroplast transformation to establish tobacco lines that express two variants of the HPV L1 protein under the control of the target site of the PPR protein CHLORORESPIRATORY REDUCTION2 (CRR2). The transgenes were inserted into a dicistronic operon driven by the plastid rRNA promoter. To determine the effectiveness of the PPR target site for the expression of the HPV L1 protein in the chloroplasts, we analyzed the accumulation of the transgenic mRNA and its processing, as well as the accumulation of the L1 protein in the transgenic lines. We established homoplastomic lines carrying either the HPV18 L1 protein or an HPV16B Enterotoxin::L1 fusion protein. The latter line showed severe growth retardation and pigment loss, suggesting that the fusion protein is toxic to the chloroplasts. Despite the presence of dicistronic mRNAs, we observed very little accumulation of monocistronic transgenic mRNA and no significant increase in CRR2-associated small RNAs. Although both lines expressed the L1 protein, quantification using an external standard suggested that the amounts were low. Our results suggest that PPR binding sites can be used to drive vaccine expression in plant chloroplasts; however, the factors that modulate the effectiveness of target gene expression remain unclear. The identification of dozens of PPR binding sites through small RNA sequencing expands the set of expression elements available for high-value protein production in chloroplasts.

Funder

German Research Foundation, DFG

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3