Zamzam Water Mitigates Cardiac Toxicity Risk through Modulation of GUT Microbiota and the Renin-angiotensin System

Author:

Sheikh Ryan Adnan1,Nadem Mohammad Shahid1,Asar Turky Omar2,Almujtaba Mohammed A.1,Naqvi Salma3,Al-Abbasi Fahad A.1,Almalki Naif Abdullah R.1,Kumar Vikas4,Anwar Firoz1

Affiliation:

1. Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

2. Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Jeddah, Saudi Arabia

3. Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates

4. Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh 211007, India

Abstract

Background: Cardiovascular diseases (CVDs) continue to exert a substantial global influence in specific areas due to population growth, aging, microbiota, and genetic/environmental factors. Drinking water has a strong impact on the health of an individual. Further, emerging evidence has highlighted the therapeutic potential and benefits of Zamzam water (Zam). Objective: We investigated the influence of Zam on doxorubicin-induced cardiac toxicity, elucidating its consequential effects on GUT microbiota dysbiosis and hepatic and renal functions. Methods: Male rats were categorized into four groups: Group 1 as Normal control (NC), Group 2 as Zamzam control (ZC), Group 3 Disease control (DC) and Group 4 as Therapeutic control (DZ) treated with Zam against doxorubicin-induced disease at a dose of 1mg/kg boy weight) intraperitoneally (i.p). Results: Significant dysbiosis in the composition of GM was observed in the DC group along with a significant decrease (p < 0.05) in serum levels of Zinc, interleukin-10 (IL-10), IL-6 and Angiotensin II (Ang II), while C-reactive protein (CRP), fibrinogen, and CKMB increased significantly (restoration of Zinc ions (0.72 ± 0.07 mcg/mL) compared to NC. Treatment with Zamzam exhibited a marked abundance of 18-times to 72% in Romboutsia, a genus of firmicutes, along with lowering of Proteobacteria in DZ followed by significant restoration of Zinc ions (0.72 ± 0.07 mcg/mL), significant (p ˂ 0.05) reduction in CRP (7.22 ± 0.39 mg/dL), CKMB (118.8 ± 1.02 U/L) and Fibrinogen (3.18 ± 0.16 mg/dL), significant (p < 0.05) increase in IL-10 (7.22 ± 0.84 pg/mL) and IL-6 (7.18 ± 0.40 pg/ml), restoration of Ang II (18.62 ± 0.50 nmol/mL/min), marked increase in renin with normal myocyte architecture and tissue orientation of kidney, and restoration of histological architecture of hepatocyte. Conclusion: Zam treatment mitigated cardiac toxicity risk through the modulation of GUT microbiota and the renin-angiotensin system and tissue histology effectively.

Publisher

Bentham Science Publishers Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3