Application of Artificial Neural Networks (ANN) to Elucidate the Connections among Smell, Obesity with Related Metabolic Alterations, and Eating Habit in Patients with Weight Excess

Author:

Velluzzi Fernanda1ORCID,Deledda Andrea1ORCID,Lombardo Mauro2ORCID,Fosci Michele1ORCID,Crnjar Roberto3,Grossi Enzo4ORCID,Sollai Giorgia3ORCID

Affiliation:

1. Obesity Unit, Department of Medical Sciences and Public Health, University Hospital of Cagliari, 09124 Cagliari, Italy

2. Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy

3. Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy

4. Autism Research Unit, Villa Santa Maria Foundation, 22038 Tavernerio, Italy

Abstract

Obesity is a severe health problem linked to an increased risk of comorbidity and mortality and its etiopathogenesis includes genetic, epigenetic, microbiota composition, and environmental factors, such as dietary habits. The olfactory system plays an important role in controlling food intake and meal size, influencing body weight and energy balance. This study aims to identify the connection between olfactory function and clinical and nutritional aspects related to weight excess in a group of 68 patients with overweight or obesity. All participants underwent the evaluation of olfactory function, anthropometric data (weight, height, BMI, waist circumference), clinical data (hypertension, disglycemia, dyslipidemia, metabolic syndrome), and adherence to the Mediterranean diet (Mediterranean Diet Score). A fourth-generation artificial neural network data mining approach was used to uncover trends and subtle associations between variables. Olfactory tests showed that 65% of patients presented hyposmia. A negative correlation was found between olfactory scores and systolic blood pressure, fasting plasma glucose, and triglycerides levels, but a positive correlation was found between olfactory scores and the Mediterranean diet score. The methodology of artificial neural networks and the semantic connectivity map “Auto-Contractive Map” highlighted the underlying scheme of the connections between the variables considered. In particular, hyposmia was linked to obesity and related metabolic alterations and the male sex. The female sex was connected with normosmia, higher adherence to the Mediterranean diet, and normal values of blood pressure, lipids, and glucose levels. These results highlight an inverse correlation between olfactory skills and BMI and show that a normosmic condition, probably because of greater adherence to the Mediterranean diet, seems to protect not only from an excessive increase in body weight but also from associated pathological conditions such as hypertension and metabolic syndrome.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3