Experimental Study to Analyze Feasibility of a Novel Panelized Ground-Source Thermoelectric System for Building Space Heating and Cooling

Author:

Miao Rui,Hu XiaoouORCID,Yu Yao,Zhang Qifeng,Lin Zhibin,Banawi AbdulazizORCID,Megri Ahmed Cherif

Abstract

A thermoelectric module is a device that converts electrical energy into thermal energy through a mechanism known as the Peltier effect. A Peltier device has hot and cold sides/substrates, and heat can be pumped from the cold side to the hot side under a given voltage. By applying it in buildings and attaching it to building envelope components, such as walls, as a heating and cooling device, the heating and cooling requirements can be met by reversing the voltage applied on these two sides/substrates. In this paper, we describe a novel, panelized, ground source, radiant system design for space heating and cooling in buildings by utilizing the Peltier effect. The system is equipped with water pipes that are attached to one side of the panel and connected with a ground loop to exchange heat between the cold/hot sides of the thermoelectric module and the underground region. The ground loop is inserted in boreholes, similar to those used for a vertical closed-loop Ground Source Heat Pump (GSHP) system, which could be more than a hundred meters deep. Experiments were conducted to evaluate the feasibility of the developed panel system applied in buildings. The results show that: (1) the average cooling Coefficients Of Performance (COP) of the system are low (0.6 or less) even though the ground is used as a heat sink, and thus additional studies are needed to improve it in the future, such as to arrange the thermoelectric modules in cascade and/or develop a new thermoelectric material that has a large Seebeck coefficient; and (2) the developed system using the underground region as the heat source has the potential of meeting heating loads of a building while maintaining at a higher system coefficient of performance (up to ~3.0) for space heating, compared to conventional heating devices, such as furnaces or boilers, especially in a region with mild winters and relatively warm ground.

Funder

North Dakota State University EPSCoR

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference47 articles.

1. 2021 Global status report for buildings and construction https://www.unep.org/resources/report/2021-global-status-report-buildings-and-construction

2. Renewables 2020 global status report https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf

3. Environment and Energy Study Institute (EESI), Fossil Fuels https://www.eesi.org/topics/fossil-fuels/description

4. A review of thermoelectric cooling: Materials, modeling and applications

5. An investigation of thermoelectric cooling devices for small-scale space conditioning applications in buildings

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3