Charge Trapping and Emission Properties in CAAC-IGZO Transistor: A First-Principles Calculations

Author:

Wang Ziqi123,Lu Nianduan123,Wang Jiawei123,Geng Di123,Wang Lingfei123ORCID,Yang Guanhua123

Affiliation:

1. State Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China

2. Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China

3. University of Chinese Academy of Sciences, Beijing 100029, China

Abstract

The c-axis aligned crystalline indium-gallium-zinc-oxide field-effect transistor (CAAC-IGZO FET), exhibiting an extremely low off-state leakage current (~10−22 A/μm), has promised to be an ideal candidate for Dynamic Random Access Memory (DRAM) applications. However, the instabilities leaded by the drift of the threshold voltage in various stress seriously affect the device application. To better develop high performance CAAC-IGZO FET for DRAM applications, it’s essential to uncover the deep physical process of charge transport mechanism in CAAC-IGZO FET. In this work, by combining the first-principles calculations and nonradiative multiphonon theory, the charge trapping and emission properties in CAAC-IGZO FET have been systematically investigated. It is found that under positive bias stress, hydrogen interstitial in Al2O3 gate dielectric is probable effective electron trap center, which has the transition level (ε (+1/−1) = 0.52 eV) above Fermi level. But it has a high capture barrier about 1.4 eV and low capture rate. Under negative bias stress, oxygen vacancy in Al2O3 gate dielectric and CAAC-IGZO active layer are probable effective electron emission centers whose transition level ε (+2/0) distributed at −0.73~−0.98 eV and 0.69 eV below Fermi level. They have a relatively low emission barrier of about 0.5 eV and 0.25 eV and high emission rate. To overcome the instability in CAAC-IGZO FET, some approaches can be taken to control the hydrogen concentration in Al2O3 dielectric layer and the concentration of the oxygen vacancy. This work can help to understand the mechanisms of instability of CAAC-IGZO transistor caused by the charge capture/emission process.

Funder

National Natural Science Foundation of China

National key research and development program

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3