A Plant-Based Animal Fat Analog Produced by an Emulsion Gel of Alginate and Pea Protein

Author:

Teng Chong1ORCID,Campanella Osvaldo H.1

Affiliation:

1. Department of Food Science and Technology, Ohio State University, 2015 Fyffe Road, Columbus, OH 43210, USA

Abstract

As the market for plant-based meat analogs grows, the development of plant-based animal fat analogs has become increasingly important. In this study, we propose an approach by developing a gelled emulsion based on sodium alginate, soybean oil (SO), and pea protein isolate. Formulations containing 15% to 70% (w/w) SO were successfully produced without phase inversion. The addition of more SO resulted in pre-gelled emulsions with a more elastic behavior. After the emulsion was gelled in the presence of calcium, the color of the gelled emulsion changed to light yellow, and the formulation containing 70% SO exhibited a color most similar to actual beef fat trimming. The lightness and yellowness values were greatly influenced by the concentrations of both SO and pea protein. Microscopic images revealed that pea protein formed an interfacial film around the oil droplets, and the oil was more tightly packed at higher oil concentrations. Differential scanning calorimetry showed that lipid crystallization of the gelled SO was influenced by the confinement of the alginate gelation, but the melting behavior was like that of free SO. FTIR spectrum analysis indicated a potential interaction between alginate and pea protein, but the functional groups of SO were unchanged. Under mild heating conditions, gelled SO exhibited an oil loss similar to that observed in actual beef trims. The developed product has the potential to mimic the appearance and slow-rendering melting attribute of real animal fat.

Funder

Carl Haas Endowed Chair funds

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3