In Situ Viscoelasticity Behavior of Cellulose–Chitin Composite Hydrogels during Ultrasound Irradiation

Author:

Iresha Harshani,Kobayashi Takaomi

Abstract

Composite hydrogels with different cellulose and chitin loading were prepared, and their in-situ viscoelastic properties were estimated under cyclic exposure of 43 kHz and 30 W ultrasound (US) using a sono-deviced rheometer. US transmitted into the hydrogel caused it to soften within about 10 sec, thus causing a decline in the storage modulus (G′) and loss modulus (G″). However, when the US was stopped, the G′ and G″ returned to their initial values. Here, G′ dropped gradually in response to the US irradiation, especially in the first cycle. After the second and third cycles, the decline was much quicker, within a few seconds. When the chitin component in the hydrogel was increased, the drop was significant. FTIR analysis of the hydrogels suggested that the peaks of -OH stretching and amide I vibration near 1655 cm−1 shifted towards lower wave numbers after the third cycle, meaning that the US influenced the hydrogen bonding interaction of the chitin amide group. This repetitive effect contributed to the breakage of hydrogen bonds and increased the interactions of the acetylamine group in chitin and in the -OH groups. Eventually, the matrix turned into a more stabilized hydrogel.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3