Examination of Various Abutment Designs Behavior Depending on Load Using Finite Element Analysis

Author:

Yağır Mehmet Onur12ORCID,Şen Şaduman3,Şen Uğur3

Affiliation:

1. Electronics and Automation Program, Adapazarı Vocational School, Sakarya University, 54050 Sakarya, Turkey

2. Dental Implant Design and Application Lab, Sakarya University, 54050 Sakarya, Turkey

3. Metallurgical Materials Engineering, Faculty of Engineering, Sakarya University, 54050 Sakarya, Turkey

Abstract

Studies on dental implant abutments’ geometric design and material selection offer significant innovations and results. These studies aim to improve the abutments’ functionality and aesthetic performance, minimize microcavities’ formation, and ensure implant-supported prostheses’ longevity. For example, CAD-CAM fabricated custom abutments have been found to produce a better marginal fit and fewer microgaps than standard abutments. In an in vitro study, transepithelial abutments offered lower microgap values than titanium-based abutments and provided a better fit at the implant–abutment interface. It is known that studies to improve mechanical and biological performance with Polyether Ether Ketone (PEEK) material have been addressed. New materials such as PEEK and zirconia have offered significant advantages in biocompatibility and aesthetics. Along with those studies, different abutment designs are also important. Abutment geometry is optimized to improve stress distribution and minimize peri-implant bone loss. In implant and abutment connections with different angles, mechanical life performances may vary depending on static and dynamic load. These studies emphasize the importance of material research on different types of connections to improve dental implants’ durability, homogeneous load distribution, and reliability. The abutment parts used in implant treatment are insufficient to distribute the load homogeneously against chewing pressure due to their materials and geometry. Non-uniform load distribution damages the abutment and the prosthetic crown, accelerating the wear process. This study aimed to create different abutment designs to improve dental implants’ biomechanical performance and longevity. This study aimed to increase the mechanical durability of the implant–abutment connection by reducing stress concentrations in response to masticatory compression on the abutment in different directions and forces and to guarantee the long-term success of the implant system by providing a more homogeneous stress distribution. It aimed to apply different forces in the axial direction to these models in a simulation environment and to calculate and compare the deformation and stress load distribution. As a method, three-dimensional models of the parts used in implant treatments and forming the implant system were designed. Different abutment designs were created with these models. Taking the current material values used in implant treatments as a reference, finite element analysis (FEA) was performed by applying different axial loads to each implant system model in the ANSYS software (version 24.1). Comparative analysis graphs were prepared and interpreted for the stress values obtained after the applied load. This study evaluated the mechanical performance of different abutment models (A, B, C, D, and E) under a 100 N load using the Kruskal–Wallis test. The Kruskal–Wallis test showed significant differences between the groups (p < 0.001). The greatest difference was observed between models E and A (q′ = 6.215), with a significant difference also found between models C and A (q′ = 3.219, p < 0.005). Regarding stress values, the highest stress on the abutment was observed in Model B (97.4 MPa), while the lowest stress was observed in Model E (9.6 MPa). The crown exhibited the highest stress in Model B (22.7 MPa) and the lowest in Model E (17.3 MPa). The implant stress was highest in Model C (14.8 MPa) and lowest in Model B (11.3 MPa). The stress values for the cortical bone and cancellous bone were quite similar across the models, showing no significant differences. These findings indicate that the abutment design and material selection significantly impact mechanical performance. Among the implant systems created with five different abutment models, in which the existing abutment geometry was also compared, homogeneous and axial distribution of the load on the abutment was achieved, especially with viscoelastic and surface area increased abutment designs. Clinically, the inadequacy and limited mounting surface or geometry of the abutments used in today’s implant treatment applications have led to different design searches. It was concluded that the designs in this study, which are considered alternatives to existing abutment models, contribute positively to the mechanical life of the abutment material, considering the von Mises stresses and directions. This study brings a new perspective to today’s practices and offers an alternative to treatment practices.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3