A Novel Bio-Inspired Optimization Algorithm Design for Wind Power Engineering Applications Time-Series Forecasting

Author:

Karim Faten Khalid1,Khafaga Doaa Sami1,Eid Marwa M.2,Towfek S. K.34,Alkahtani Hend K.5ORCID

Affiliation:

1. Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

2. Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 35712, Egypt

3. Computer Science and Intelligent Systems Research Center, Blacksburg, VA 24060, USA

4. Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt

5. Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

Wind patterns can change due to climate change, causing more storms, hurricanes, and quiet spells. These changes can dramatically affect wind power system performance and predictability. Researchers and practitioners are creating more advanced wind power forecasting algorithms that combine more parameters and data sources. Advanced numerical weather prediction models, machine learning techniques, and real-time meteorological sensor and satellite data are used. This paper proposes a Recurrent Neural Network (RNN) forecasting model incorporating a Dynamic Fitness Al-Biruni Earth Radius (DFBER) algorithm to predict wind power data patterns. The performance of this model is compared with several other popular models, including BER, Jaya Algorithm (JAYA), Fire Hawk Optimizer (FHO), Whale Optimization Algorithm (WOA), Grey Wolf Optimizer (GWO), and Particle Swarm Optimization (PSO)-based models. The evaluation is done using various metrics such as relative root mean squared error (RRMSE), Nash Sutcliffe Efficiency (NSE), mean absolute error (MAE), mean bias error (MBE), Pearson’s correlation coefficient (r), coefficient of determination (R2), and determination agreement (WI). According to the evaluation metrics and analysis presented in the study, the proposed RNN-DFBER-based model outperforms the other models considered. This suggests that the RNN model, combined with the DFBER algorithm, predicts wind power data patterns more effectively than the alternative models. To support the findings, visualizations are provided to demonstrate the effectiveness of the RNN-DFBER model. Additionally, statistical analyses, such as the ANOVA test and the Wilcoxon Signed-Rank test, are conducted to assess the significance and reliability of the results.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3