Short-term wind power forecasting using integrated boosting approach

Author:

Ahmed Ubaid,Muhammad Rasheed,Abbas Syed Sami,Aziz Imran,Mahmood Anzar

Abstract

Rapidly increasing global energy demand and environmental concerns have shifted the attention of policymakers toward the large-scale integration of renewable energy resources (RERs). Wind energy is a type of RERs with vast energy potential and no environmental pollution is associated with it. The sustainable development goals: affordable and clean energy, climate action, and industry, innovation and infrastructure, can be achieved by integrating wind energy into the existing power systems. However, the integration of wind energy will bring instability challenges due to its intermittent nature. Mitigating these challenges necessitates the implementation of effective wind power forecasting models. Therefore, we have proposed a novel integrated approach, Boost-LR, for hour-ahead wind power forecasting. The Boost-LR is a multilevel technique consisting of non-parametric models, extreme gradient boosting (XgBoost), categorical boosting (CatBoost), and random forest (RF), and parametric approach, linear regression (LR). The first layer of the Boost-LR uses the boosting algorithms that process the data according to their tree development architectures and pass their intermediary forecast to LR which is deployed in layer two and processes the intermediary forecasts of layer one models to provide the final predicted wind power. To demonstrate the generalizability and robustness of the proposed study, the performance of Boost-LR is compared with the individual models of CatBoost, XgBoost, RF, deep learning networks: long short-term memory (LSTM) and gated recurrent unit (GRU), Transformer and Informer models using root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and normalized root mean square error (NRMSE). Findings demonstrate the effectiveness of the Boost-LR as its forecasting performance is superior to the compared models. The improvement in MAE of Boost-LR is recorded as to be 31.42%, 32.14%, and 27.55% for the datasets of Bruska, Jelinak, and Inland wind farm, respectively as compared to the MAE of CatBoost which is revealed as the second-best performing model. Moreover, the proposed study also reports a literature comparison that further validates the effectiveness of Boost-LR performance for short-term wind power forecasting.

Publisher

Frontiers Media SA

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3