The Lift Effects of Chordwise Wing Deformation and Body Angle on Low-Speed Flying Butterflies

Author:

Fang Yan-Hung1,Tang Chia-Hung1ORCID,Lin You-Jun1,Yeh Szu-I2,Yang Jing-Tang1

Affiliation:

1. Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan

2. Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701401, Taiwan

Abstract

This work investigates the effects of body angle and wing deformation on the lift of free-flying butterflies. The flight kinematics were recorded using three high-speed cameras, and particle-image velocimetry (PIV) was used to analyze the transient flow field around the butterfly. Parametric studies via numerical simulations were also conducted to examine the force generation of the wing by fixing different body angles and amplifying the chordwise deformation. The results show that appropriately amplifying chordwise deformation enhances wing performance due to an increase in the strength of the vortex and a more stabilized attached vortex. The wing undergoes a significant chordwise deformation, which can generate a larger lift coefficient than that with a higher body angle, resulting in a 14% increase compared to a lower chordwise deformation and body angle. This effect is due to the leading-edge vortex attached to the curved wing, which alters the force from horizontal to vertical. It, therefore, produces more efficient lift during flight. These findings reveal that the chordwise deformation of the wing and the body angle could increase the lift of the butterfly. This work was inspired by real butterfly flight, and the results could provide valuable knowledge about lift generation for designing microaerial vehicles.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3