The Relationship between Nanostructured Bio-Inspired Material Surfaces and the Free Energy Barrier Using Coarse-Grained Molecular Dynamics

Author:

Meng Fan1ORCID,Arai Noriyoshi1ORCID

Affiliation:

1. Department of Mechanical Engineering, Keio University, Yokohama 2238522, Japan

Abstract

Bio-inspired (biomimetic) materials, which are inspired by living organisms, offer exciting opportunities for the development of advanced functionalities. Among them, bio-inspired superhydrophobic surfaces have attracted considerable interest due to their potential applications in self-cleaning surfaces and reducing fluid resistance. Although the mechanism of superhydrophobicity is understood to be the free energy barrier between the Cassie and Wenzel states, the solid-surface technology to control the free energy barrier is still unclear. Therefore, previous studies have fabricated solid surfaces with desired properties through trial and error by measuring contact angles. In contrast, our study directly evaluates the free energy barrier using molecular simulations and attempts to relate it to solid-surface parameters. Through a series of simulations, we explore the behavior of water droplets on surfaces with varying values of surface pillar spacing and surface pillar height. The results show that the free energy barrier increases significantly as the pillar spacing decreases and/or as the pillar height increases. Our study goes beyond traditional approaches by exploring the relationship between free energy barriers, surface parameters, and hydrophobicity, providing a more direct and quantified method to evaluate surface hydrophobicity. This knowledge contributes significantly to material design by providing valuable insights into the relationship between surface parameters, free energy barriers, and hydrophilicity/hydrophobicity.

Funder

Iketani Science and Technology Foundation

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3