Advancements in Complementary Metal-Oxide Semiconductor-Compatible Tunnel Barrier Engineered Charge-Trapping Synaptic Transistors for Bio-Inspired Neural Networks in Harsh Environments

Author:

Lee Dong-Hee1ORCID,Park Hamin2ORCID,Cho Won-Ju1ORCID

Affiliation:

1. Department of Electronic Materials Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea

2. Department of Electronic Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea

Abstract

This study aimed to propose a silicon-on-insulator (SOI)-based charge-trapping synaptic transistor with engineered tunnel barriers using high-k dielectrics for artificial synapse electronics capable of operating at high temperatures. The transistor employed sequential electron trapping and de-trapping in the charge storage medium, facilitating gradual modulation of the silicon channel conductance. The engineered tunnel barrier structure (SiO2/Si3N4/SiO2), coupled with the high-k charge-trapping layer of HfO2 and high-k blocking layer of Al2O3, enabled reliable long-term potentiation/depression behaviors within a short gate stimulus time (100 μs), even under elevated temperatures (75 and 125 °C). Conductance variability was determined by the number of gate stimuli reflected in the maximum excitatory postsynaptic current (EPSC) and the residual EPSC ratio. Moreover, we analyzed the Arrhenius relationship between the EPSC as a function of the gate pulse number (N = 1–100) and the measured temperatures (25, 75, and 125 °C), allowing us to deduce the charge trap activation energy. A learning simulation was performed to assess the pattern recognition capabilities of the neuromorphic computing system using the modified National Institute of Standards and Technology datasheets. This study demonstrates high-reliability silicon channel conductance modulation and proposes in-memory computing capabilities for artificial neural networks using SOI-based charge-trapping synaptic transistors.

Funder

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3