Smart pH Sensing: A Self-Sensitivity Programmable Platform with Multi-Functional Charge-Trap-Flash ISFET Technology

Author:

Kim Yeong-Ung1,Cho Won-Ju1ORCID

Affiliation:

1. Department of Electronic Materials Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea

Abstract

This study presents a novel pH sensor platform utilizing charge-trap-flash-type metal oxide semiconductor field-effect transistors (CTF-type MOSFETs) for enhanced sensitivity and self-amplification. Traditional ion-sensitive field-effect transistors (ISFETs) face challenges in commercialization due to low sensitivity at room temperature, known as the Nernst limit. To overcome this limitation, we explore resistive coupling effects and CTF-type MOSFETs, allowing for flexible adjustment of the amplification ratio. The platform adopts a unique approach, employing CTF-type MOSFETs as both transducers and resistors, ensuring efficient sensitivity control. An extended-gate (EG) structure is implemented to enhance cost-effectiveness and increase the overall lifespan of the sensor platform by preventing direct contact between analytes and the transducer. The proposed pH sensor platform demonstrates effective sensitivity control at various amplification ratios. Stability and reliability are validated by investigating non-ideal effects, including hysteresis and drift. The CTF-type MOSFETs’ electrical characteristics, energy band diagrams, and programmable resistance modulation are thoroughly characterized. The results showcase remarkable stability, even under prolonged and repetitive operations, indicating the platform’s potential for accurate pH detection in diverse environments. This study contributes a robust and stable alternative for detecting micro-potential analytes, with promising applications in health management and point-of-care settings.

Funder

Korea Institute for Advancement of Technology grant funded by the Korean government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3