Discriminative Multi-Stream Postfilters Based on Deep Learning for Enhancing Statistical Parametric Speech Synthesis

Author:

Coto-Jiménez MarvinORCID

Abstract

Statistical parametric speech synthesis based on Hidden Markov Models has been an important technique for the production of artificial voices, due to its ability to produce results with high intelligibility and sophisticated features such as voice conversion and accent modification with a small footprint, particularly for low-resource languages where deep learning-based techniques remain unexplored. Despite the progress, the quality of the results, mainly based on Hidden Markov Models (HMM) does not reach those of the predominant approaches, based on unit selection of speech segments of deep learning. One of the proposals to improve the quality of HMM-based speech has been incorporating postfiltering stages, which pretend to increase the quality while preserving the advantages of the process. In this paper, we present a new approach to postfiltering synthesized voices with the application of discriminative postfilters, with several long short-term memory (LSTM) deep neural networks. Our motivation stems from modeling specific mapping from synthesized to natural speech on those segments corresponding to voiced or unvoiced sounds, due to the different qualities of those sounds and how HMM-based voices can present distinct degradation on each one. The paper analyses the discriminative postfilters obtained using five voices, evaluated using three objective measures, Mel cepstral distance and subjective tests. The results indicate the advantages of the discriminative postilters in comparison with the HTS voice and the non-discriminative postfilters.

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3