Multi-Class Classification of Medical Data Based on Neural Network Pruning and Information-Entropy Measures

Author:

Sánchez-Gutiérrez Máximo EduardoORCID,González-Pérez Pedro PabloORCID

Abstract

Medical data includes clinical trials and clinical data such as patient-generated health data, laboratory results, medical imaging, and different signals coming from continuous health monitoring. Some commonly used data analysis techniques are text mining, big data analytics, and data mining. These techniques can be used for classification, clustering, and machine learning tasks. Machine learning could be described as an automatic learning process derived from concepts and knowledge without deliberate system coding. However, finding a suitable machine learning architecture for a specific task is still an open problem. In this work, we propose a machine learning model for the multi-class classification of medical data. This model is comprised of two components—a restricted Boltzmann machine and a classifier system. It uses a discriminant pruning method to select the most salient neurons in the hidden layer of the neural network, which implicitly leads to a selection of features for the input patterns that feed the classifier system. This study aims to investigate whether information-entropy measures may provide evidence for guiding discriminative pruning in a neural network for medical data processing, particularly cancer research, by using three cancer databases: Breast Cancer, Cervical Cancer, and Primary Tumour. Our proposal aimed to investigate the post-training neuronal pruning methodology using dissimilarity measures inspired by the information-entropy theory; the results obtained after pruning the neural network were favourable. Specifically, for the Breast Cancer dataset, the reported results indicate a 10.68% error rate, while our error rates range from 10% to 15%; for the Cervical Cancer dataset, the reported best error rate is 31%, while our proposal error rates are in the range of 4% to 6%; lastly, for the Primary Tumour dataset, the reported error rate is 20.35%, and our best error rate is 31%.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3