Research on Economic Optimal Dispatching of Microgrid Based on an Improved Bacteria Foraging Optimization

Author:

Zhang Yi1,Lv Yang1,Zhou Yangkun1

Affiliation:

1. College of Electrical and Computer Science, Jilin Jianzhu University, Changchun 130000, China

Abstract

This paper proposes an improved Bacterial Foraging Optimization for economically optimal dispatching of the microgrid. Three optimized steps are presented to solve the slow convergence, poor precision, and low efficiency of traditional Bacterial Foraging Optimization. First, the self-adaptive step size equation in the chemotaxis process is present, and the particle swarm velocity equation is used to improve the convergence speed and precision of the algorithm. Second, the crisscross algorithm is used to enrich the replication population and improve the global search performance of the algorithm in the replication process. Finally, the dynamic probability and sine-cosine algorithm are used to solve the problem of easy loss of high-quality individuals in dispersal. Quantitative analysis and experiments demonstrated the superiority of the algorithm in the benchmark function. In addition, this study built a multi-objective microgrid dynamic economic dispatch model and dealt with the uncertainty of wind and solar using the Monte Carlo method in the model. Experiments show that this model can effectively reduce the operating cost of the microgrid, improve economic benefits, and reduce environmental pollution. The economic cost is reduced by 3.79% compared to the widely used PSO, and the economic cost is reduced by 5.23% compared to the traditional BFO.

Funder

fund of the Science and Technology Development Project of Jilin Province

the fund of the education department of Jilin province

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3