MPPT of PEM Fuel Cell Using PI-PD Controller Based on Golden Jackal Optimization Algorithm

Author:

Agwa Ahmed M.12,Alanazi Tarek I.3ORCID,Kraiem Habib14,Touti Ezzeddine15ORCID,Alanazi Abdulaziz1ORCID,Alanazi Dhari K.1

Affiliation:

1. Department of Electrical Engineering, College of Engineering, Northern Border University, Arar 73222, Saudi Arabia

2. Department of Electrical Engineering, Faculty of Engineering, Al-Azhar University, Cairo 11651, Egypt

3. Department of Physics, College of Science, Northern Border University, Arar 73222, Saudi Arabia

4. Processes, Energy, Environment and Electrical Systems, National Engineering School of Gabes, University of Gabes, Gabes 6029, Tunisia

5. Electrical Engineering Department, Laboratory of Industrial Systems Engineering and Renewable Energies (LISIER), National Higher Engineering School of Tunis, Tunis 1008, Tunisia

Abstract

Subversive environmental impacts and limited amounts of conventional forms of energy necessitate the utilization of renewable energies (REs). Unfortunately, REs such as solar and wind energies are intermittent, so they should be stored in other forms to be used during their absence. One of the finest storage techniques for REs is based on hydrogen generation via an electrolyzer during abundance, then electricity generation by fuel cell (FC) during their absence. With reference to the advantages of the proton exchange membrane fuel cell (PEM-FC), this is preferred over other kinds of FCs. The output power of the PEM-FC is not constant, since it depends on hydrogen pressure, cell temperature, and electric load. Therefore, a maximum power point tracking (MPPT) system should be utilized with PEM-FC. The techniques previously utilized have some disadvantages, such as slowness of response and largeness of each oscillation, overshoot and undershoot, so this article addresses an innovative MPPT for PEM-FC using a consecutive controller made up of proportional-integral (PI) and proportional-derivative (PD) controllers whose gains are tuned via the golden jackal optimization algorithm (GJOA). Simulation results when applying the GJOA-PI-PD controller for MPPT of PEM-FC reveal its advantages over other approaches according to quickness of response, smallness of oscillations, and tininess of overshoot and undershoot. The overshoot resulting using the GJOA-PI-PD controller for MPPT of PEM-FC is smaller than that of perturb and observe, GJOA-PID, and GJOA-FOPID controllers by 98.26%, 86.30%, and 89.07%, respectively. Additionally, the fitness function resulting when using the GJOA-PI-PD controller for MPPT of PEM-FC is smaller than that of the aforementioned approaches by 93.95%, 87.17%, and 87.97%, respectively.

Funder

Deanship of Scientific Research at Northern Border University

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3