Toward the Intelligent, Safe Exploration of a Biomimetic Underwater Robot: Modeling, Planning, and Control

Author:

Wang Yu1,Wang Jian23ORCID,Yu Lianyi23,Kong Shihan4,Yu Junzhi24ORCID

Affiliation:

1. Department of Automation, Tsinghua University, Beijing 100084, China

2. The Laboratory of Cognitive and Decision Intelligence for Complex System, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

3. The School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China

4. The State Key Laboratory for Turbulence and Complex Systems, Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing 100871, China

Abstract

Safe, underwater exploration in the ocean is a challenging task due to the complex environment, which often contains areas with dense coral reefs, uneven terrain, or many obstacles. To address this issue, an intelligent underwater exploration framework of a biomimetic robot is proposed in this paper, including an obstacle avoidance model, motion planner, and yaw controller. Firstly, with the aid of the onboard distance sensors in robotic fish, the obstacle detection model is established. On this basis, two types of obstacles, i.e., rectangular and circular, are considered, followed by the obstacle collision model’s construction. Secondly, a deep reinforcement learning method is adopted to plan the plane motion, and the performances of different training setups are investigated. Thirdly, a backstepping method is applied to derive the yaw control law, in which a sigmoid function-based transition method is employed to smooth the planning output. Finally, a series of simulations are carried out to verify the effectiveness of the proposed method. The obtained results indicate that the biomimetic robot can not only achieve intelligent motion planning but also accomplish yaw control with obstacle avoidance, offering a valuable solution for underwater operation in the ocean.

Funder

National Natural Science Foundation of China

Young Elite Scientists Sponsorship Program by CAST

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3