Animal robots in the African wilderness: Lessons learned and outlook for field robotics

Author:

Melo Kamilo12ORCID,Horvat Tomislav23ORCID,Ijspeert Auke J.2ORCID

Affiliation:

1. KM-RoBoTa Sàrl, Renens, Switzerland.

2. École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

3. Verity AG, Zurich, Switzerland.

Abstract

In early 2016, we had the opportunity to test a pair of sprawling posture robots, one designed to mimic a crocodile and another designed to mimic a monitor lizard, along the banks of the Nile River in Uganda, Africa. These robots were developed uniquely for a documentary by the BBC called Spy in the Wild and fell at the intersection of our interests in developing robots to study animals and robots for disaster response and other missions in challenging environments. The documentary required that these robots not only walk and swim in the same harsh, natural environments as the animals that they were modeled on and film up close but also move and even look exactly like the real animals from an aesthetic perspective. This pushed us to take a fundamentally different approach to the design and building of biorobots compared with our typical laboratory-residing robots, in addition to collaborating with sculpting artists to enhance our robots’ aesthetics. The robots needed to be designed on the basis of a systematic study of data on the model specimens, be fabricated rapidly, and be reliable and robust enough to handle what the wild would throw at them. Here, we share the research efforts of this collaboration, the design specifications of the robots’ hardware and software, the lessons learned from testing these robots in the field first hand, and how the eye-opening experience shaped our subsequent work on disaster response robotics and biorobotics for challenging amphibious scenarios.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Artificial Intelligence,Control and Optimization,Computer Science Applications,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3