Wearable Multi-Channel Pulse Signal Acquisition System Based on Flexible MEMS Sensor Arrays with TSV Structure

Author:

Kang Xiaoxiao123,Huang Lin123,Zhang Yitao123ORCID,Yun Shichang1,Jiao Binbin12,Liu Xin123,Zhang Jun123,Li Zhiqiang123,Zhang Haiying123

Affiliation:

1. Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Beijing Key Laboratory for Next Generation RF Communication Chip Technology, Beijing 100029, China

Abstract

Micro-electro-mechanical system (MEMS) pressure sensors play a significant role in pulse wave acquisition. However, existing MEMS pulse pressure sensors bound with a flexible substrate by gold wire are vulnerable to crush fractures, leading to sensor failure. Additionally, establishing an effective mapping between the array sensor signal and pulse width remains a challenge. To solve the above problems, we propose a 24-channel pulse signal acquisition system based on a novel MEMS pressure sensor with a through-silicon-via (TSV) structure, which connects directly to a flexible substrate without gold wire bonding. Firstly, based on the MEMS sensor, we designed a 24-channel pressure sensor flexible array to collect the pulse waves and static pressure. Secondly, we developed a customized pulse preprocessing chip to process the signals. Finally, we built an algorithm to reconstruct the three-dimensional pulse wave from the array signal and calculate the pulse width. The experiments verify the high sensitivity and effectiveness of the sensor array. In particular, the measurement results of pulse width are highly positively correlated with those obtained via infrared images. The small-size sensor and custom-designed acquisition chip meet the needs of wearability and portability, meaning that it has significant research value and commercial prospects.

Funder

Chinese Academy of Sciences

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3