A Novel Radial Artery P-S Curve Model Based on Radial Vibration of Vascular Wall

Author:

Wang Guotai,Geng Xingguang,Kang Xiaoxiao,Zhang YitaoORCID,Zhang Jun,Zhang Haiying

Abstract

In pulse wave analysis, the changing curve of pulse wave strength with continuous increasing pressure, that is, the P-S (pressure-strength) curve, contains abundant human physiological information, but there is no accurate model to describe the formation mechanism of the curve. Therefore, this paper proposes a modeling method of the radial artery P-S curve based on the radial vibration of the vascular wall. The modeling method includes three parts. Firstly, based on hemodynamics, we proposed the blood motion equation in the pulsation process of healthy people. Secondly, the motion equation of the vascular wall based on the fluid–structure interaction between blood motion and vascular wall was established. Finally, according to the elastic theory of the vascular wall, the relationship between pulse strength and extravascular pressure of blood vessels was found. To verify the accuracy and applicability of the model, this paper simulated the changes in the vascular wall stress and the intravascular pressure with the extravascular pressure during the process of vascular deformation. In addition, 69 healthy volunteers were selected to participate in this study. Based on the gradient compression, the pulse strength envelope under the continuous pressure sequence of the radial artery, namely the pulse P-S curve, was extracted. We also analyzed the relationship between the individual P-S curve difference and BMI. The results show that the actual human body data collection and analysis results are consistent with the theoretical model established in this paper, which indicates that the model can provide a novel idea for the evaluation of the state of the human body.

Funder

Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3