Bioinspired Photo-Responsive Liquid Gating Membrane

Author:

Zhang Rongrong,Lei Jinmei,Xu Jiadai,Fu Hexuan,Jing Yuan,Chen Baiyi,Hou Xu

Abstract

Stomata in the plant leaves are channels for gas exchange between the plants and the atmosphere. The gas exchange rate can be regulated by adjusting the opening and closing of stoma under the external stimuli, which plays a vital role in plant survival. Under visible light irradiation, the stomata open for gas exchange with the surroundings, while under intense UV light irradiation, the stomata close to prevent the moisture loss of plants from excessive transpiration. Inspired by this stomatal self-protection behavior, we have constructed a bioinspired photo-responsive liquid gating membrane (BPRLGM) through infusing the photo-responsive gating liquid obtained by dissolving the azobenzene-based photo-responsive surfactant molecules (AzoC8F15) in N,N-Dimethylacetamide (DMAC) into nylon porous substrate, which can reversibly switch the open/closed states under different photo-stimuli. Theoretical analysis and experimental data have demonstrated that the reversible photoisomerization of azobenzene-based surfactant molecules induces a change in surface tension of the photo-responsive gating liquid, which eventually results in the reversible variation of substantial critical pressure for gas through BPRLGM under alternating UV (PCritical (off)) and visible (PCritical (on)) light irradiations. Therefore, driven by a pressure difference ΔP between PCritical (on) and PCritical (off), the reversible switches on the open/closed states of this photo-responsive liquid gating membrane can be realized under photo-stimuli. This bioinspired membrane with switchable open/closed liquid gating performance under photo-stimuli has the opportunity to be used in the precise and contactless control of microfluidics.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

111 Project

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3