Biped Gait Stability Classification Based on the Predicted Step Viability

Author:

Parik-Americano Pedro1ORCID,Igual Jorge2ORCID,Driemeier Larissa1ORCID,Becman Eric Cito1ORCID,Forner-Cordero Arturo1ORCID

Affiliation:

1. Biomechatronics Laboratory Mechatronics Department, Escola Politécnica, University of São Paulo (EP-USP), São Paulo 05508-030, Brazil

2. Departamento de Comunicaciones, Instituto de Telecomunicaciones y Aplicaciones Multimedia (ITEAM), Universitat Politècnica de València, 46022 Valencia, Spain

Abstract

In this paper, we address the challenge of ensuring stability in bipedal walking robots and exoskeletons. We explore the feasibility of real-time implementation for the Predicted Step Viability algorithm (PSV), a complex multi-step optimization criterion for planning future steps in bipedal gait. To overcome the high computational cost of the PSV algorithm, we performed an analysis using 11 classification algorithms and a stacking strategy to predict if a step will be stable or not. We generated three datasets of increasing complexity through PSV simulations to evaluate the classification performance. Among the classifiers, k Nearest Neighbors, Support Vector Machine with Radial Basis Function Kernel, Decision Tree, and Random Forest exhibited superior performance. Multi-Layer Perceptron also consistently performed well, while linear-based algorithms showed lower performance. Importantly, the use of stacking did not significantly improve performance. Our results suggest that the feature vector applied with this approach is applicable across various robotic models and datasets, provided that training data is balanced and sufficient points are used. Notably, by leveraging classifiers, we achieved rapid computation of results in less than 1 ms, with minimal computational cost.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3