Running Gait and Control of Quadruped Robot Based on SLIP Model

Author:

He Xiaolong1,Li Xinjie1,Wang Xiangji1,Meng Fantuo1,Guan Xikang1,Jiang Zhenyu1,Yuan Lipeng2,Ba Kaixian1,Ma Guoliang1,Yu Bin1

Affiliation:

1. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China

2. School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

Legged robots have shown great adaptability to various environments. However, conventional walking gaits are insufficient to meet the motion requirements of robots. Therefore, achieving high-speed running for legged robots has become a significant research topic. In this paper, based on the Spring-Loaded Inverted Pendulum (SLIP) model and the optimized Double leg—Spring-Loaded Inverted Pendulum (D-SLIP) model, the running control strategies for the double flying phase Bound gait and the Rotatory gallop gait of quadruped robots are designed. First, the dynamics of the double flying phase Bound gait and Rotatory gallop gait are analyzed. Then, based on the “three-way” control idea of the SLIP model, the running control strategy for the double flying phase Bound gait is designed. Subsequently, the SLIP model is optimized to derive the D-SLIP model with two touchdown legs, and its dynamic characteristics are analyzed. And the D-SLIP model is applied to the running control strategy of the Rotatory gallop gait. Furthermore, joint simulation verification is conducted using Adams virtual prototyping and MATLAB/Simulink control systems for the designed control strategies. Finally, experimental verification is performed for the double flying phase Bound gait running control strategy. The experimental results demonstrate that the quadruped robot can achieve high-speed and stable running.

Funder

National Excellent Natural Science Foundation of China

Yanzhao’s Young Scientist Project

Hebei Natural Science Foundation

Science Research Project of Hebei Education Department

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3