Magnetic Elastomers with Smart Variable Elasticity Mimetic to Sea Cucumber

Author:

Kobayashi ,Akama ,Ohori ,Kawai ,Mitsumata

Abstract

A magnetic-responsive elastomer consisting of magnetic elastomer and zinc oxide with a tetrapod shape and long arms was fabricated mimetic to the tissue of sea cucumber in which collagen fibrils are dispersed. Only the part of magnetic elastomer is active to magnetic fields, zinc oxide plays a role of reinforcement for the chain structure of magnetic particles formed under magnetic fields. The magnetic response of storage modulus for bimodal magnetic elastomers was measured when the magnetic particle was substituted to a nonmagnetic one, while keeping the total volume fraction of both particles. The change in storage modulus obeyed basically a mixing rule. However, a remarkable enhancement was observed at around the substitution ratio of 0.20. In addition, the bimodal magnetic elastomers with tetrapods exhibited apparent change in storage modulus even at regions with a high substitution ratio where monomodal magnetic elastomers consist of only magnetic particles with less response to the magnetic field. This strongly indicates that discontinuous chains of small amounts of magnetic particles were bridged by the nonmagnetic tetrapods. On the contrary, the change in storage modulus for bimodal magnetic elastomers with zinc oxide with irregular shape showed a mixing rule with a substitution ratio below 0.30. However, it decreased significantly at the substitution ratio above it. The structures of bimodal magnetic elastomers with tetrapods and the tissue of sea cucumber with collagen fibrils are discussed.

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3