Bidirectional Jump Point Search Path-Planning Algorithm Based on Electricity-Guided Navigation Behavior of Electric Eels and Map Preprocessing

Author:

Gong Hao12,Tan Xiangquan123,Wu Qingwen123,Li Jiaxin13,Chu Yongzhi123,Jiang Aimin123,Han Hasiaoqier123,Zhang Kai13

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. Research Center for Materials and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China

3. CAS Key Laboratory of On-Orbit Manufacturing and Integration for Space Optics System, Chinese Academy of Sciences, Changchun 130033, China

Abstract

The electric eel has an organ made up of hundreds of electrocytes, which is called the electric organ. This organ is used to sense and detect weak electric field signals. By sensing electric field signals, the electric eel can identify changes in their surroundings, detect potential prey or other electric eels, and use it for navigation and orientation. Path-finding algorithms are currently facing optimality challenges such as the shortest path, shortest time, and minimum memory overhead. In order to improve the search performance of a traditional A* algorithm, this paper proposes a bidirectional jump point search algorithm (BJPS+) based on the electricity-guided navigation behavior of electric eels and map preprocessing. Firstly, a heuristic strategy based on the electrically induced navigation behavior of electric eels is proposed to speed up the node search. Secondly, an improved jump point search strategy is proposed to reduce the complexity of jump point screening. Then, a new map preprocessing strategy is proposed to construct the relationship between map nodes. Finally, path planning is performed based on the processed map information. In addition, a rewiring strategy is proposed to reduce the number of path inflection points and path length. The simulation results show that the proposed BJPS+ algorithm can generate optimal paths quickly and with less search time when the map is known.

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Reference33 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bioelectromagnetic Fields as Signaling Currents of Life;Radiation Medicine and Protection;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3