Origami-Inspired Vacuum-Actuated Foldable Actuator Enabled Biomimetic Worm-like Soft Crawling Robot

Author:

Xu Qiping1,Zhang Kehang1,Ying Chenhang1,Xie Huiyu1ORCID,Chen Jinxin1ORCID,E Shiju1ORCID

Affiliation:

1. Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology & Equipment of Zhejiang Province, Department of Robotics Engineering, College of Engineering, Zhejiang Normal University, Jinhua 321004, China

Abstract

The development of a soft crawling robot (SCR) capable of quick folding and recovery has important application value in the field of biomimetic engineering. This article proposes an origami-inspired vacuum-actuated foldable soft crawling robot (OVFSCR), which is composed of entirely soft foldable mirrored origami actuators with a Kresling crease pattern, and possesses capabilities of realizing multimodal locomotion incorporating crawling, climbing, and turning movements. The OVFSCR is characterized by producing periodically foldable and restorable body deformation, and its asymmetric structural design of low front and high rear hexahedral feet creates a friction difference between the two feet and contact surface to enable unidirectional movement. Combining an actuation control sequence with an asymmetrical structural design, the body deformation and feet in contact with ground can be coordinated to realize quick continuous forward crawling locomotion. Furthermore, an efficient dynamic model is developed to characterize the OVFSCR’s motion capability. The robot demonstrates multifunctional characteristics, including crawling on a flat surface at an average speed of 11.9 mm/s, climbing a slope of 3°, carrying a certain payload, navigating inside straight and curved round tubes, removing obstacles, and traversing different media. It is revealed that the OVFSCR can imitate contractile deformation and crawling mode exhibited by soft biological worms. Our study contributes to paving avenues for practical applications in adaptive navigation, exploration, and inspection of soft robots in some uncharted territory.

Funder

Zhejiang Provincial Natural Science Foundation

National Natural Science Foundation of China

China Scholarship Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3