Evaluating the Performance of Individual and Novel Ensemble of Machine Learning and Statistical Models for Landslide Susceptibility Assessment at Rudraprayag District of Garhwal Himalaya

Author:

Saha SunilORCID,Saha Anik,Hembram Tusar KantiORCID,Pradhan BiswajeetORCID,Alamri Abdullah M.

Abstract

Landslides are known as the world’s most dangerous threat in mountainous regions and pose a critical obstacle for both economic and infrastructural progress. It is, therefore, quite relevant to discuss the pattern of spatial incidence of this phenomenon. The current research manifests a set of individual and ensemble of machine learning and probabilistic approaches like an artificial neural network (ANN), support vector machine (SVM), random forest (RF), logistic regression (LR), and their ensembles such as ANN-RF, ANN-SVM, SVM-RF, SVM-LR, LR-RF, LR-ANN, ANN-LR-RF, ANN-RF-SVM, ANN-SVM-LR, RF-SVM-LR, and ANN-RF-SVM-LR for mapping landslide susceptibility in Rudraprayag district of Garhwal Himalaya, India. A landslide inventory map along with sixteen landslide conditioning factors (LCFs) was used. Randomly partitioned sets of 70%:30% were used to ascertain the goodness of fit and predictive ability of the models. The contribution of LCFs was analyzed using the RF model. The altitude and drainage density were found to be the responsible factors in causing the landslide in the study area according to the RF model. The robustness of models was assessed through three threshold dependent measures, i.e., receiver operating characteristic (ROC), precision and accuracy, and two threshold independent measures, i.e., mean-absolute-error (MAE) and root-mean-square-error (RMSE). Finally, using the compound factor (CF) method, the models were prioritized based on the results of the validation methods to choose best model. Results show that ANN-RF-LR indicated a realistic finding, concentrating only on 17.74% of the study area as highly susceptible to landslide. The ANN-RF-LR ensemble demonstrated the highest goodness of fit and predictive capacity with respective values of 87.83% (area under the success rate curve) and 93.98% (area under prediction rate curve), and the highest robustness correspondingly. These attempts will play a significant role in ensemble modeling, in building reliable and comprehensive models. The proposed ANN-RF-LR ensemble model may be used in the other geographic areas having similar geo-environmental conditions. It may also be used in other types of geo-hazard modeling.

Funder

University of Technology Sydney

King Saud University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference83 articles.

1. Suggested nomenclature for landslides;Bull. Int. Assoc. Eng. Geol.,1990

2. Global landslide and avalanche hotspots

3. Environmental impact of landslides;Geertsema,2009

4. How accurate are the performances of gridded precipitation data products over Northeast China?;Faiz;Atmos. Res.,2018

5. The application of GIS-based bivariate statistical methods for landslide hazards assessment in the upper Tons river valley, Western Himalaya, India;Raman;Georisk: Assess. Manag. Risk Eng. Syst. Geohazards,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3