Enhancing landslide susceptibility mapping using a positive-unlabeled machine learning approach: a case study in Chamoli, India

Author:

Zhang DanrongORCID,Jindal Dipali,Roy NimishaORCID,Vangla PrashanthORCID,Frost J. DavidORCID

Abstract

Abstract Introduction The Indian Himalayas' susceptibility to landslides, particularly as a location where climate change effects may be event catalysts, necessitates the development of dependable landslide susceptibility maps (LSM). Method This study diverges from traditional binary classification models, framing LSM as a positive-unlabeled learning problem. This approach acknowledges that regions without recorded landslides are not necessarily at low risk but could simply have not experienced landslides yet. The study utilizes novel positive-unlabeled learning-enhanced algorithms—Random Forest, K-Nearest Neighbor, and Decision Tree—to create LSM for Chamoli district, India. Eleven causative factors for landslides are identified, including elevation, aspect, slope, geology, geomorphology, distance to lineament, lithology, NDVI, distance to river, distance to road and residential land use. To address spatial correlation biases, instead of randomly splitting the dataset, the study adopts spatial splitting to get the training and testing datasets. Conclusion The study reveals that positive-unlabeled learning substantially improves the Area Under Curve and recall, leading to a more conservative LSM compared to binary classification methods. Analysis shows that the southern region of Chamoli exhibits high recall but lower accuracy, suggesting a latent high landslide susceptibility despite a lack of historical landslides in this region. The study also quantifies the impact of human activity on landslide risk, indicating an elevated threat to life and the local economy, especially in Chamoli's southwestern areas.

Funder

Elizabeth and Bill Higginbotham Professorship at Georgia Tech

Scheme for Promotion of Academic and Research Collaboration

National Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3