Electrochemical Performance of Graphene-Modulated Sulfur Composite Cathodes Using LiBH4 Electrolyte for All-Solid-State Li-S Battery

Author:

Patodia Tarun,Gupta Mukesh Kumar,Singh Rini,Ichikawa Takayuki,Jain AnkurORCID,Tripathi BalramORCID

Abstract

All-solid-state Li-S batteries (use of solid electrolyte LiBH4) were prepared using cathodes of a homogeneous mixture of graphene oxide (GO) and reduced graphene oxide (rGO) with sulfur (S) and solid electrolyte lithium borohydride (LiBH4), and their electrochemical performance was reported. The use of LiBH4 and its compatibility with Li metal permits the utilization of Li anode that improves the vitality of composite electrodes. The GO-S and rGO-S nanocomposites with different proportions have been synthesized. Their structural and morphological characterizations were performed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the results are presented. The electrochemical performance was tested by galvanostatic charge-discharge measurements at a 0.1 C-rate. The results presented here demonstrate the successful implementation of GO-S composites in an all-solid-state battery.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3