Abstract
The northeastern margin of the Qinghai–Tibet Plateau (QTP) is an agricultural protection area in China’s new development plan, and the primary region of winter wheat growth within QTP. Winter wheat monitoring is critical for understanding grain self-sufficiency, climate change, and sustainable socioeconomic and ecological development in the region. However, due to the complex terrain and high altitude of the region, with discontinuous arable land and the relatively low level of agricultural development, there are no effective localization methodologies for extracting and monitoring the detailed planting distribution information of winter wheat. In this study, Sentinel-2A/B data from 2019 to 2020, obtained through the Google Earth Engine platform, were used to build time series reference curves of vegetation indices in Minhe. Planting distribution information of winter wheat was extracted based on the phenology time-weighted dynamic time warping (PT-DTW) method, and the effects of different vegetation indices’ time series and their corresponding threshold parameters were compared. The results showed that: (1) the three vegetation indices—normalized difference vegetation index (NDVI), normalized differential phenology index (NDPI), and normalized difference greenness index (NDGI)—maintained high mapping potential; (2) under the optimal threshold, >88% accuracy of index identification for winter wheat extraction was achieved; (3) due to improved extraction accuracy and resulting boundary range, NDPI and its corresponding optimal parameter (T = 0.05) performed the best. The process and results of this study have certain reference value for the study of winter wheat planting information change and the formulation of dynamic monitoring schemes in agricultural areas of QTP.
Funder
Local Scientific and Technological Development Projects of Qinghai Guided by the Central Government of China
Subject
General Earth and Planetary Sciences
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献