Crude Oil Price Forecast Based on Deep Transfer Learning: Shanghai Crude Oil as an Example

Author:

Deng Chao,Ma Liang,Zeng Taishan

Abstract

Crude oil is an important fuel resource for all countries. Accurate predictions of oil prices have important economic and social values. However, the price of crude oil is highly nonlinear under the influence of many factors, so it is very difficult to predict accurately. Shanghai crude oil futures were officially listed in March 2018. It is of great significance to accurately predict the price of Shanghai crude oil futures for guiding China’s domestic production practice. Forecasting the price of Shanghai crude oil futures is even more difficult because of the lack of price data due to the short listing time. In order to solve this problem, this paper proposes using Long Short-Term Memory Network (LSTM) based on transfer learning to predict the price of crude oil in Shanghai. The basic idea is to take advantage of the correlation between Brent crude oil and Shanghai crude oil, use Brent crude oil for training in the early stage, and then use Shanghai crude oil to fine-tune the network. The empirical results show that the LSTM model based on transfer learning has strong generalization ability and high prediction accuracy.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3