Abstract
Accurate and rapid prediction of the energy consumption of CNC machining is an effective means to realize the lean management of CNC machine tools energy consumption as well as to achieve the sustainable development of the manufacturing industry. Aiming at the drawbacks of existing CNC milling energy consumption prediction methods in terms of efficiency and precision, a novel milling energy consumption prediction method based on program parsing and parallel neural network is proposed. Firstly, the relationship between CNC program and energy consumption of CNC machine tool is analyzed. Based on the structural characteristics of the CNC program, an automatic parsing algorithm for the CNC program is proposed. Moreover, based on the improved parallel neural network, the mapping relationship between the energy consumption parameters of each CNC instruction and the milling energy consumption is constructed. Finally, the proposed method is compared with the literature to verify the superiority of the proposed method in terms of prediction efficiency and accuracy, and the practicability of the method is verified through the case study. The proposed method lays the foundation for efficient and low-consumption process planning and energy efficiency improvement of machine tools and is conducive to the sustainable development of the environment.
Funder
National Natural Science Foundation of China
Key Research and Development Program Project of Hubei Provincial
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献