Innovative Approaches to Sustainable Computer Numeric Control Machining: A Machine Learning Perspective on Energy Efficiency

Author:

Nugrahanto Indrawan12ORCID,Gunawan Hariyanto23ORCID,Chen Hsing-Yu23

Affiliation:

1. Department of Electrical Engineering, State Polytechnic of Malang, Malang 65141, Indonesia

2. Department of Mechanical Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan

3. R&D Center for Smart Manufacturing, Chung Yuan Christian University, Taoyuan 320314, Taiwan

Abstract

Computer Numeric Control (CNC) five-axis milling plays a significant role in the machining of precision molds and dies, aerospace parts, consumer electronics, etc. This research aims to explore the potential of the machine learning (ML) technique in improving energy efficiency during the CNC five-axis milling process for sustainable manufacturing. The experiments with various machining parameters, forms of toolpath planning, and dry cutting conditions were carried out, and the data regarding energy consumption were collected simultaneously. The relationship between machine parameters and energy consumption was analyzed and built. Subsequently, a machine learning algorithm was developed to classify test methods and identify energy-efficient machining strategies. The developed algorithm was implemented and assessed using different classification methods based on the ML concept to effectively reduce energy consumption. The results show that the Decision Tree and Random Forest algorithms produced lower Root Mean Square Error (RMSE) values of 4.24 and 4.28, respectively, compared to Linear, Lasso, and Ridge Regression algorithms. Verification experiments were conducted to ascertain the real-world applicability and performance of the ML-based energy efficiency approach in an operational CNC five-axis milling machine. The findings not only underscore the potential of ML techniques in optimizing energy efficiency but also offer a compelling pathway towards enhanced sustainability in CNC machining operations. The developed algorithm was implemented within a simulation framework and the algorithm was rigorously assessed using machine learning analysis to effectively reduce energy consumption, all while ensuring the accuracy of the machining results and integrating both conventional and advanced regression algorithms into CNC machining processes. Manufacturers stand to realize substantial energy savings and bolster sustainability initiatives, thus exemplifying the transformative power of ML-driven optimization strategies.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3