Abstract
This research focused on real-time optimization control to improve the fuel consumption of power-split hybrid electric vehicles. Particle swarm optimization (PSO) was implemented to reduce fuel consumption for real-time optimization control. The engine torque was design-variable to manage the energy distribution of dual energy sources. The AHS II power-split hybrid electric system was used as the powertrain system. The hybrid electric vehicle model was built using Matlab/Simulink. The simulation was performed according to US FTP-75 regulations. The PSO design objective was to minimize the equivalent fuel rate with the driving system still meeting the dynamic performance requirements. Through dynamic vehicle simulation and PSO, the required torque value for the whole drivetrain system and corresponding high-efficiency engine operating point can be found. With that, the two motor/generators (M/Gs) supplemented the rest required torques. The composite fuel economy of the PSO algorithm was 46.8 mpg, which is a 9.4% improvement over the base control model. The PSO control strategy could quickly converge and that feature makes PSO a good fit to be used in real-time control applications.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference22 articles.
1. General Motors Front Wheel Drive Two-Mode Hybrid Transmission;Hendrickson,2009
2. An Analytic Foundation for the Two-Mode Hybrid-Electric Powertrain with a Comparison to the Single-Mode Toyota Prius THS-II Powertrain;Meisel,2009
3. Energy management strategy for plug-in hybrid electric vehicles. A comparative study
4. Energy management strategies for parallel hybrid vehicles using fuzzy logic
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献