A Cost-Effective Fault Diagnosis and Localization Approach for Utility-Scale PV Systems Using Limited Number of Sensors

Author:

Alfaris Faris E.1ORCID,Al-Ammar Essam A.1ORCID,Ghazi Ghazi A.1ORCID,AL-Katheri Ahmed A.1ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

Abstract

As a result of global efforts to combat the rise in global climate change and carbon dioxide emissions, there has been a substantial increase in renewable energy investment for both residential and utility power generation. Solar power facilities are estimated to be among the major contributors to global decarbonization in terms of capacity by 2050. Consequently, the majority of economically significant countries are progressively implementing utility-scale photovoltaic (U-PV) systems. Nevertheless, a major obstacle to the expansion of U-PV generation is the identification and assessment of direct current (DC) faults in the extensive array of PV panels. In order to address this obstacle, it is imperative to provide an evaluation method that can accurately and cost-effectively identify and locate potential DC faults in PV arrays. Therefore, many studies attempted to utilize thermal cameras, voltage and current sensors, power databases, and other detecting elements; however, some of these technologies provide extra hurdles in terms of the quantity and expense of the utilized hardware equipment. This work presents a sophisticated system that aims to diagnose and locate various types of PV faults, such as line-to-ground, line-to-line, inter-string, open-circuit, and partial shading events, within a PV array strings down to a module level. This study primarily depends on three crucial indicators: precise calculation of the PV array output power and current, optimal placement of a limited number of voltage sensors, and execution of specifically specified tests. The estimation of PV array power, along with selectively placed voltage sensors, minimizes the time and equipment required for fault detection and diagnosis. The feasibility of the proposed method is investigated with real field data and the PSCAD simulation platform during all possible weather conditions and array faults. The results demonstrate that the proposed approach can accurately diagnose and localize faults with only NS/2 voltage sensors, where NS is the number of PV array parallel strings.

Funder

Deputyship for Research & Innovation, “Ministry of Education” in Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3