A Review of Photovoltaic Module Failure and Degradation Mechanisms: Causes and Detection Techniques

Author:

Al Mahdi Hussain1ORCID,Leahy Paul G.2ORCID,Alghoul Mohammad3,Morrison Alan P.1ORCID

Affiliation:

1. Electrical & Electronic Engineering, School of Engineering & Architecture, University College Cork, T12 K8AF Cork, Ireland

2. Energy Engineering, School of Engineering & Architecture, University College Cork, T12 K8AF Cork, Ireland

3. Interdisciplinary Research Centre for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

Abstract

With the global increase in the deployment of photovoltaic (PV) modules in recent years, the need to explore and understand their reported failure mechanisms has become crucial. Despite PV modules being considered reliable devices, failures and extreme degradations often occur. Some degradations and failures within the normal range may be minor and not cause significant harm. Others may initially be mild but can rapidly deteriorate, leading to catastrophic accidents, particularly in harsh environments. This paper conducts a state-of-the-art literature review to examine PV failures, their types, and their root causes based on the components of PV modules (from protective glass to junction box). It outlines the hazardous consequences arising from PV module failures and describes the potential damage they can bring to the PV system. The literature reveals that each component is susceptible to specific types of failure, with some components deteriorating on their own and others impacting additional PV components, leading to more severe failures. Finally, this review briefly summarises PV failure detection techniques, emphasising the significance of electrical characterisation techniques and underlining the importance of considering more electrical parameters. Most importantly, this review identifies the most prevalent degradation processes, laying the foundation for further investigation by the PV research community through modelling and experimental studies. This allows for early detection by comparing PV performance when failures or degradation occur to prevent serious progression. It is worth noting that most of the studies included in this review primarily focus on detailing failures and degradation observed in PV operations, which can be attributed to various factors, including the manufacturing process and other external influences. Hence, they provide explanations of these failure mechanisms and causes but do not extensively explore corrective actions or propose solutions based on either laboratory experiments or real-world experience. Although, within this field of study, there are corresponding studies that have designed experiments to suggest preventive measures and potential solutions, an in-depth review of those studies is beyond the scope of this paper. However, this paper, in turn, serves as a valuable resource for scholars by confining PV failures to critically evaluate available studies for preventative measures and corrective actions.

Funder

Saudi Ministry of Education

Publisher

MDPI AG

Subject

General Medicine

Reference251 articles.

1. Review and outlook on the international renewable energy development;Li;Energy Built Environ.,2022

2. How did solar cells get so cheap?;Green;Joule,2019

3. (2022). PSE Projects, Photovoltaics Report, Fraunhofer Institute for Solar Energy Systems ISE.

4. IEA (2021). Net Renewable Capacity Additions by Technology, 2020–2022, IEA.

5. Photovoltaic materials, history, status and outlook;Goetzberger;Mater. Sci. Eng. R Rep.,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3