SVM+KF Target Tracking Strategy Using the Signal Strength in Wireless Sensor Networks

Author:

Wang Xing,Liu Xuejun,Wang Ziran,Li Ruichao,Wu Yiguang

Abstract

Target Tracking (TT) is a fundamental application of wireless sensor networks. TT based on received signal strength indication (RSSI) is by far the cheapest and simplest approach, but suffers from a low stability and precision owing to multiple paths, occlusions, and decalibration effects. To address this problem, we propose an innovative TT algorithm, known as the SVM+KF method, which combines the support vector machine (SVM) and an improved Kalman filter (KF). We first use the SVM to obtain an initial estimate of the target’s position based on the RSSI. This enhances the ability of our algorithm to process nonlinear data. We then apply an improved KF to modify this estimated position. Our improved KF adds the threshold value of the innovation update in the traditional KF. This value changes dynamically according to the target speed and network parameters to ensure the stability of the results. Simulations and real experiments in different scenarios demonstrate that our algorithm provides a superior tracking accuracy and stability compared to similar algorithms.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3