Online sequential DV-Hop Localization Algorithm Based on Machine Learning for Wireless Sensors Network

Author:

Liouane Oumaima1ORCID,FEMMAM Smain2,BAKIR Toufik1

Affiliation:

1. Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte

2. UHA: Universite de Haute-Alsace

Abstract

Abstract In many applications of Wireless Sensor Network (WSN), the transmitted data collected from the connected wireless sensor nodes has not great significance without knowing its geographical location. In this paper, firstly, we propose an analytical probabilistic model for multi-hops distance estimation between anchor nodes positions and unknown nodes positions. Moreover, we use the Machine Learning Technique (MLT) to optimize the accuracy of node localization in WSN. A range-free technique, based on the multi-hop localization method, is used with the proposed MLT. The proposed method consists of probabilistic expected hop-size and the On-line Sequential Extreme Learning Machine. The localization performance of the proposed techniques is proved through simulation tests when compared with the other soft-computing algorithms in term of Average Localization Errors (ALE).

Publisher

Research Square Platform LLC

Reference24 articles.

1. DV based positioning in ad hoc networks;Dragoş;Telecommunication Systems,2003

2. Improvement of range-free localization technology by a novel DV-hop protocol in wireless sensor networks;GUI, Linqing VAL;Ad Hoc Networks,2015

3. Han, X. I. A. O., Hao, Z. H. A. N. G., Zengfeng, W. A. N. G. (2017). An RSSI based DV-hop algorithm for wireless sensor networks. Communications, Computers and Signal Processing (PACRIM), 2017 IEEE Pacific Rim Conference on. IEEE, pp. 1–6.

4. Tang, J., & Han, J. (2021). "An improved received signal strength indicator positioning algorithm based on weighted centroid and adaptive threshold selection."Alexandria Engineering Journalpp.3915–3920.

5. Performance Evaluation of DV-Hop Localization Algorithm for Geographical Routing in Wireless Sensor Networks;Hadir A;Procedia computer science,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3